Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 2.131
1.
Nat Commun ; 15(1): 3836, 2024 May 07.
Article En | MEDLINE | ID: mdl-38714691

Exercise has beneficial effects on cognition throughout the lifespan. Here, we demonstrate that specific exercise patterns transform insufficient, subthreshold training into long-term memory in mice. Our findings reveal a potential molecular memory window such that subthreshold training within this window enables long-term memory formation. We performed RNA-seq on dorsal hippocampus and identify genes whose expression correlate with conditions in which exercise enables long-term memory formation. Among these genes we found Acvr1c, a member of the TGF ß family. We find that exercise, in any amount, alleviates epigenetic repression at the Acvr1c promoter during consolidation. Additionally, we find that ACVR1C can bidirectionally regulate synaptic plasticity and long-term memory in mice. Furthermore, Acvr1c expression is impaired in the aging human and mouse brain, as well as in the 5xFAD mouse model, and over-expression of Acvr1c enables learning and facilitates plasticity in mice. These data suggest that promoting ACVR1C may protect against cognitive impairment.


Activin Receptors, Type I , Epigenesis, Genetic , Hippocampus , Memory, Long-Term , Physical Conditioning, Animal , Animals , Memory, Long-Term/physiology , Mice , Activin Receptors, Type I/genetics , Activin Receptors, Type I/metabolism , Humans , Physical Conditioning, Animal/physiology , Hippocampus/metabolism , Male , Neuronal Plasticity/genetics , Mice, Inbred C57BL , Promoter Regions, Genetic , Female , Aging/genetics , Aging/physiology
2.
Proc Natl Acad Sci U S A ; 121(16): e2315958121, 2024 Apr 16.
Article En | MEDLINE | ID: mdl-38588427

The ability of neurons to rapidly remodel their synaptic structure and strength in response to neuronal activity is highly conserved across species and crucial for complex brain functions. However, mechanisms required to elicit and coordinate the acute, activity-dependent structural changes across synapses are not well understood, as neurodevelopment and structural plasticity are tightly linked. Here, using an RNAi screen in Drosophila against genes affecting nervous system functions in humans, we uncouple cellular processes important for synaptic plasticity and synapse development. We find mutations associated with neurodegenerative and mental health disorders are 2-times more likely to affect activity-induced synaptic remodeling than synapse development. We report that while both synapse development and activity-induced synaptic remodeling at the fly NMJ require macroautophagy (hereafter referred to as autophagy), bifurcation in the autophagy pathway differentially impacts development and synaptic plasticity. We demonstrate that neuronal activity enhances autophagy activation but diminishes degradative autophagy, thereby driving the pathway towards autophagy-based secretion. Presynaptic knockdown of Snap29, Sec22, or Rab8, proteins implicated in the secretory autophagy pathway, is sufficient to abolish activity-induced synaptic remodeling. This study uncovers secretory autophagy as a transsynaptic signaling mechanism modulating synaptic plasticity.


Drosophila Proteins , Neuromuscular Junction , Animals , Humans , Neuromuscular Junction/metabolism , Synapses/metabolism , Drosophila/physiology , Neurons/metabolism , Autophagy/genetics , Neuronal Plasticity/genetics , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Synaptic Transmission/physiology , GTP Phosphohydrolases/metabolism
3.
Adv Sci (Weinh) ; 11(17): e2306630, 2024 May.
Article En | MEDLINE | ID: mdl-38493494

The modification of synaptic and neural connections in adults, including the formation and removal of synapses, depends on activity-dependent synaptic and structural plasticity. MicroRNAs (miRNAs) play crucial roles in regulating these changes by targeting specific genes and regulating their expression. The fact that somatic and dendritic activity in neurons often occurs asynchronously highlights the need for spatial and dynamic regulation of protein synthesis in specific milieu and cellular loci. MicroRNAs, which can show distinct patterns of enrichment, help to establish the localized distribution of plasticity-related proteins. The recent study using atomic force microscopy (AFM)-based nanoscale imaging reveals that the abundance of miRNA(miR)-134 is inversely correlated with the functional activity of dendritic spine structures. However, the miRNAs that are selectively upregulated in potentiated synapses, and which can thereby support prospective changes in synaptic efficacy, remain largely unknown. Using AFM force imaging, significant increases in miR-132 in the dendritic regions abutting functionally-active spines is discovered. This study provides evidence for miR-132 as a novel positive miRNA regulator residing in dendritic shafts, and also suggests that activity-dependent miRNAs localized in distinct sub-compartments of neurons play bi-directional roles in controlling synaptic transmission and synaptic plasticity.


MicroRNAs , Microscopy, Atomic Force , Neuronal Plasticity , Synapses , Animals , Mice , Dendritic Spines/metabolism , Dendritic Spines/genetics , Dendritic Spines/ultrastructure , Mice, Inbred C57BL , MicroRNAs/genetics , MicroRNAs/metabolism , Microscopy, Atomic Force/methods , Neuronal Plasticity/genetics , Neuronal Plasticity/physiology , Neurons/metabolism , Synapses/metabolism , Synapses/genetics
4.
J Chem Neuroanat ; 137: 102414, 2024 Apr.
Article En | MEDLINE | ID: mdl-38490283

Rat offspring who are exposed to an amorphous formula of curcumin (CUR) from the embryonic stage have anti-anxiety-like behaviors, enhanced fear extinction learning, and increased synaptic plasticity in the hippocampal dentate gyrus (DG). In the present study, we investigated the links between genes with altered methylation status in the neurogenic niche and enhanced neural functions after CUR exposure. We conducted methylation and RNA sequencing analyses of the DG of CUR-exposed rat offspring on day 77 after delivery. Methylation status and transcript levels of candidate genes were validated using methylation-sensitive high-resolution melting and real-time reverse-transcription PCR, respectively. In the CUR group, we confirmed the hypermethylation and downregulation of Gpr150, Mmp23, Rprml, and Pcdh8 as well as the hypomethylation and upregulation of Ppm1j, Fam222a, and Opn3. Immunohistochemically, reprimo-like+ hilar cells and protocadherin-8+ granule cells were decreased and opsin-3+ hilar cells were increased by CUR exposure. Both reprimo-like and opsin-3 were partially expressed on subpopulations of glutamic acid decarboxylase 67+ γ-aminobutyric acid-ergic interneurons. Furthermore, the transcript levels of genes involved in protocadherin-8-mediated N-cadherin endocytosis were altered with CUR exposure; this was accompanied by Ctnnb1 and Syp upregulation and Mapk14, Map2k3, and Grip1 downregulation, suggesting that CUR-induced enhanced synaptic plasticity is associated with cell adhesion. Together, our results indicate that functionally different genes have altered methylation and expression in different neuronal populations of the hippocampal neurogenic niche, thus enhancing synaptic plasticity after CUR exposure.


Curcumin , DNA Methylation , Hippocampus , Animals , Curcumin/pharmacology , Rats , DNA Methylation/drug effects , Hippocampus/metabolism , Hippocampus/drug effects , Female , Neurogenesis/drug effects , Neurogenesis/genetics , Male , Pregnancy , Rats, Sprague-Dawley , Neuronal Plasticity/drug effects , Neuronal Plasticity/genetics , Prenatal Exposure Delayed Effects/metabolism , Prenatal Exposure Delayed Effects/chemically induced
5.
Front Immunol ; 15: 1322842, 2024.
Article En | MEDLINE | ID: mdl-38455054

Autophagy is a conserved cellular mechanism that enables the degradation and recycling of cellular organelles and proteins via the lysosomal pathway. In neurodevelopment and maintenance of neuronal homeostasis, autophagy is required to regulate presynaptic functions, synapse remodeling, and synaptic plasticity. Deficiency of autophagy has been shown to underlie the synaptic and behavioral deficits of many neurological diseases such as autism, psychiatric diseases, and neurodegenerative disorders. Recent evidence reveals that dysregulated autophagy plays an important role in the initiation and progression of neuroinflammation, a common pathological feature in many neurological disorders leading to defective synaptic morphology and plasticity. In this review, we will discuss the regulation of autophagy and its effects on synapses and neuroinflammation, with emphasis on how autophagy is regulated by epigenetic mechanisms under healthy and diseased conditions.


Epigenesis, Genetic , Neuroinflammatory Diseases , Humans , Neurons/metabolism , Autophagy/genetics , Neuronal Plasticity/genetics
6.
Nat Commun ; 15(1): 2694, 2024 Mar 27.
Article En | MEDLINE | ID: mdl-38538603

Long noncoding RNAs (lncRNAs) play crucial roles in maintaining cell homeostasis and function. However, it remains largely unknown whether and how neuronal activity impacts the transcriptional regulation of lncRNAs, or if this leads to synapse-related changes and contributes to the formation of long-term memories. Here, we report the identification of a lncRNA, SLAMR, which becomes enriched in CA1-hippocampal neurons upon contextual fear conditioning but not in CA3 neurons. SLAMR is transported along dendrites via the molecular motor KIF5C and is recruited to the synapse upon stimulation. Loss of function of SLAMR reduces dendritic complexity and impairs activity-dependent changes in spine structural plasticity and translation. Gain of function of SLAMR, in contrast, enhances dendritic complexity, spine density, and translation. Analyses of the SLAMR interactome reveal its association with CaMKIIα protein through a 220-nucleotide element also involved in SLAMR transport. A CaMKII reporter reveals a basal reduction in CaMKII activity with SLAMR loss-of-function. Furthermore, the selective loss of SLAMR function in CA1 disrupts the consolidation of fear memory in male mice, without affecting their acquisition, recall, or extinction, or spatial memory. Together, these results provide new molecular and functional insight into activity-dependent changes at the synapse and consolidation of contextual fear.


RNA, Long Noncoding , Mice , Male , Animals , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Calcium-Calmodulin-Dependent Protein Kinase Type 2/genetics , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Neurons/metabolism , Hippocampus/physiology , Mental Recall/physiology , Neuronal Plasticity/genetics , Mice, Inbred C57BL
7.
Science ; 383(6686): eadk1291, 2024 Mar.
Article En | MEDLINE | ID: mdl-38422154

SynGAP is an abundant synaptic GTPase-activating protein (GAP) critical for synaptic plasticity, learning, memory, and cognition. Mutations in SYNGAP1 in humans result in intellectual disability, autistic-like behaviors, and epilepsy. Heterozygous Syngap1-knockout mice display deficits in synaptic plasticity, learning, and memory and exhibit seizures. It is unclear whether SynGAP imparts structural properties at synapses independently of its GAP activity. Here, we report that inactivating mutations within the GAP domain do not inhibit synaptic plasticity or cause behavioral deficits. Instead, SynGAP modulates synaptic strength by physically competing with the AMPA-receptor-TARP excitatory receptor complex in the formation of molecular condensates with synaptic scaffolding proteins. These results have major implications for developing therapeutic treatments for SYNGAP1-related neurodevelopmental disorders.


Cognition , Neuronal Plasticity , ras GTPase-Activating Proteins , Animals , Humans , Mice , Autistic Disorder/genetics , GTPase-Activating Proteins/genetics , Learning , Mice, Knockout , Neuronal Plasticity/genetics , ras GTPase-Activating Proteins/genetics , ras GTPase-Activating Proteins/metabolism , Catalysis
8.
Int J Mol Sci ; 25(3)2024 Jan 26.
Article En | MEDLINE | ID: mdl-38338822

The hippocampal formation, particularly the CA2 subregion, is critical for social memory formation and memory processing, relying on synaptic plasticity-a fundamental mechanism by which synapses strengthen. Given the role of the ubiquitin-proteasome system (UPS) in various nervous system processes, including learning and memory, we were particularly interested in exploring the involvement of RING-type ubiquitin E3 ligases, such as UHRF2 (NIRF), in social behavior and synaptic plasticity. Our results revealed altered social behavior in mice with systemic Uhrf2 knockout, including changes in nest building, tube dominance, and the three-chamber social novelty test. In Uhrf2 knockout mice, the entorhinal cortex-CA2 circuit showed significant reductions in synaptic plasticity during paired-pulse facilitation and long-term potentiation, while the inability to evoke synaptic plasticity in the Schaffer-collateral CA2 synapses remained unaffected. These changes in synaptic plasticity correlated with significant changes in gene expression including genes related to vesicle trafficking and transcriptional regulation. The effects of Uhrf2 knockout on synaptic plasticity and the observed gene expression changes highlight UHRF2 as a regulator of learning and memory processes at both the cellular and systemic levels. Targeting E3 ubiquitin ligases, such as UHRF2, may hold therapeutic potential for memory-related disorders, warranting further investigation.


Hippocampus , Neuronal Plasticity , Ubiquitin-Protein Ligases , Animals , Mice , Hippocampus/metabolism , Memory Disorders/metabolism , Mice, Knockout , Neuronal Plasticity/genetics , Social Behavior , Ubiquitin/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism
9.
J Neurosci ; 44(10)2024 Mar 06.
Article En | MEDLINE | ID: mdl-38238073

Experience-dependent gene expression reshapes neural circuits, permitting the learning of knowledge and skills. Most learning involves repetitive experiences during which neurons undergo multiple stages of functional and structural plasticity. Currently, the diversity of transcriptional responses underlying dynamic plasticity during repetition-based learning is poorly understood. To close this gap, we analyzed single-nucleus transcriptomes of L2/3 glutamatergic neurons of the primary motor cortex after 3 d motor skill training or home cage control in water-restricted male mice. "Train" and "control" neurons could be discriminated with high accuracy based on expression patterns of many genes, indicating that recent experience leaves a widespread transcriptional signature across L2/3 neurons. These discriminating genes exhibited divergent modes of coregulation, differentiating neurons into discrete clusters of transcriptional states. Several states showed gene expressions associated with activity-dependent plasticity. Some of these states were also prominent in the previously published reference, suggesting that they represent both spontaneous and task-related plasticity events. Markedly, however, two states were unique to our dataset. The first state, further enriched by motor training, showed gene expression suggestive of late-stage plasticity with repeated activation, which is suitable for expected emergent neuronal ensembles that stably retain motor learning. The second state, equally found in both train and control mice, showed elevated levels of metabolic pathways and norepinephrine sensitivity, suggesting a response to common experiences specific to our experimental conditions, such as water restriction or circadian rhythm. Together, we uncovered divergent transcriptional responses across L2/3 neurons, each potentially linked with distinct features of repetition-based motor learning such as plasticity, memory, and motivation.


Learning , Neuronal Plasticity , Male , Mice , Animals , Neuronal Plasticity/genetics , Learning/physiology , Neurons/physiology , Motor Skills/physiology , Water/metabolism
10.
Prog Neurobiol ; 233: 102568, 2024 Feb.
Article En | MEDLINE | ID: mdl-38216113

The Topoisomerase 3B (Top3b) - Tudor domain containing 3 (Tdrd3) protein complex is the only dual-activity topoisomerase complex that can alter both DNA and RNA topology in animals. TOP3B mutations in humans are associated with schizophrenia, autism and cognitive disorders; and Top3b-null mice exhibit several phenotypes observed in animal models of psychiatric and cognitive disorders, including impaired cognitive and emotional behaviors, aberrant neurogenesis and synaptic plasticity, and transcriptional defects. Similarly, human TDRD3 genomic variants have been associated with schizophrenia, verbal short-term memory and educational attainment. However, the importance of Tdrd3 in normal brain function has not been examined in animal models. Here we generated a Tdrd3-null mouse strain and demonstrate that these mice display both shared and unique defects when compared to Top3b-null mice. Shared defects were observed in cognitive behaviors, synaptic plasticity, adult neurogenesis, newborn neuron morphology, and neuronal activity-dependent transcription; whereas defects unique to Tdrd3-deficient mice include hyperactivity, changes in anxiety-like behaviors, olfaction, increased new neuron complexity, and reduced myelination. Interestingly, multiple genes critical for neurodevelopment and cognitive function exhibit reduced levels in mature but not nascent transcripts. We infer that the entire Top3b-Tdrd3 complex is essential for normal brain function, and that defective post-transcriptional regulation could contribute to cognitive and psychiatric disorders.


Cognitive Dysfunction , Gene Expression Regulation , Animals , Humans , Mice , Amino Acid Sequence , Neurogenesis/genetics , Neuronal Plasticity/genetics , Proteins/genetics , Proteins/metabolism
11.
Int J Mol Sci ; 25(2)2024 Jan 11.
Article En | MEDLINE | ID: mdl-38256016

Methamphetamine (METH) abuse inflicts both physical and psychological harm. While our previous research has established the regulatory role of miR-29c-3p in behavior sensitization, the underlying mechanisms and target genes remain incompletely understood. In this study, we employed the isobaric tags for relative and absolute quantitation (iTRAQ) technique in conjunction with Ingenuity pathway analysis (IPA) to probe the putative molecular mechanisms of METH sensitization through miR-29c-3p inhibition. Through a microinjection of AAV-anti-miR-29c-3p into the nucleus accumbens (NAc) of mice, we observed the attenuation of METH-induced locomotor effects. Subsequent iTRAQ analysis identified 70 differentially expressed proteins (DEPs), with 22 up-regulated potential target proteins identified through miR-29c-3p target gene prediction and IPA analysis. Our focus extended to the number of neuronal branches, the excitatory synapse count, and locomotion-related pathways. Notably, GPR37, NPC1, and IREB2 emerged as potential target molecules for miR-29c-3p regulation, suggesting their involvement in the modulation of METH sensitization. Quantitative PCR confirmed the METH-induced aberrant expression of Gpr37, Npc1, and Ireb2 in the NAc of mice. Specifically, the over-expression of miR-29c-3p led to a significant reduction in the mRNA level of Gpr37, while the inhibition of miR-29c-3p resulted in a significant increase in the mRNA level of Gpr37, consistent with the regulatory principle of miRNAs modulating target gene expression. This suggests that miR-29c-3p potentially influences METH sensitization through its regulation of neuroplasticity. Our research indicates that miR-29c-3p plays a crucial role in regulating METH-induced sensitization, and it identified the potential molecular of miR-29c-3p in regulating METH-induced sensitization.


Amphetamine-Related Disorders , Methamphetamine , MicroRNAs , Niemann-Pick Disease, Type C , Animals , Mice , Nucleus Accumbens , Methamphetamine/pharmacology , MicroRNAs/genetics , Neuronal Plasticity/genetics , RNA, Messenger , Receptors, G-Protein-Coupled
12.
Cell Death Dis ; 15(1): 20, 2024 01 09.
Article En | MEDLINE | ID: mdl-38195526

In recent years, primary familial brain calcification (PFBC), a rare neurological disease characterized by a wide spectrum of cognitive disorders, has been associated to mutations in the sodium (Na)-Phosphate (Pi) co-transporter SLC20A2. However, the functional roles of the Na-Pi co-transporters in the brain remain still largely elusive. Here we show that Slc20a1 (PiT-1) and Slc20a2 (PiT-2) are the most abundant Na-Pi co-transporters expressed in the brain and are involved in the control of hippocampal-dependent learning and memory. We reveal that Slc20a1 and Slc20a2 are differentially distributed in the hippocampus and associated with independent gene clusters, suggesting that they influence cognition by different mechanisms. Accordingly, using a combination of molecular, electrophysiological and behavioral analyses, we show that while PiT-2 favors hippocampal neuronal branching and survival, PiT-1 promotes synaptic plasticity. The latter relies on a likely Otoferlin-dependent regulation of synaptic vesicle trafficking, which impacts the GABAergic system. These results provide the first demonstration that Na-Pi co-transporters play key albeit distinct roles in the hippocampus pertaining to the control of neuronal plasticity and cognition. These findings could provide the foundation for the development of novel effective therapies for PFBC and cognitive disorders.


Cognition , Symporters , Ion Transport , Neuronal Plasticity/genetics , Phosphates
13.
Cells ; 13(2)2024 01 06.
Article En | MEDLINE | ID: mdl-38247806

Neurological diseases can lead to the denervation of brain regions caused by demyelination, traumatic injury or cell death. The molecular and structural mechanisms underlying lesion-induced reorganization of denervated brain regions, however, are a matter of ongoing investigation. In order to address this issue, we performed an entorhinal cortex lesion (ECL) in mouse organotypic entorhino-hippocampal tissue cultures of both sexes and studied denervation-induced plasticity of mossy fiber synapses, which connect dentate granule cells (dGCs) with CA3 pyramidal cells (CA3-PCs) and play important roles in learning and memory formation. Partial denervation caused a strengthening of excitatory neurotransmission in dGCs, CA3-PCs and their direct synaptic connections, as revealed by paired recordings (dGC-to-CA3-PC). These functional changes were accompanied by ultrastructural reorganization of mossy fiber synapses, which regularly contain the plasticity-regulating protein synaptopodin and the spine apparatus organelle. We demonstrate that the spine apparatus organelle and synaptopodin are related to ribosomes in close proximity to synaptic sites and reveal a synaptopodin-related transcriptome. Notably, synaptopodin-deficient tissue preparations that lack the spine apparatus organelle failed to express lesion-induced synaptic adjustments. Hence, synaptopodin and the spine apparatus organelle play a crucial role in regulating lesion-induced synaptic plasticity at hippocampal mossy fiber synapses.


Mossy Fibers, Hippocampal , Neuronal Plasticity , Synapses , Animals , Female , Male , Mice , Cell Death , Denervation , Hippocampus , Mossy Fibers, Hippocampal/metabolism , Synapses/metabolism , Neuronal Plasticity/genetics
14.
Alzheimers Dement ; 20(1): 601-614, 2024 Jan.
Article En | MEDLINE | ID: mdl-37753835

INTRODUCTION: Human data suggest susceptibility and resilience to features of Alzheimer's disease (AD) such as microglia activation and synaptic dysfunction are under genetic control. However, causal relationships between these processes, and how genomic diversity modulates them remain systemically underexplored in mouse models. METHODS: AD-vulnerable hippocampal neurons were virally labeled in inbred (C57BL/6J) and wild-derived (PWK/PhJ) APP/PS1 and wild-type mice, and brain microglia depleted from 4 to 8 months of age. Dendrites were assessed for synapse plasticity changes by evaluating spine densities and morphologies. RESULTS: In C57BL/6J, microglia depletion blocked amyloid-induced synaptic density and morphology changes. At a finer scale, synaptic morphology on individual branches was dependent on microglia-dendrite physical interactions. Conversely, synapses from PWK/PhJ mice showed remarkable stability in response to amyloid, and no evidence of microglia contact-dependent changes on dendrites. DISCUSSION: These results demonstrate that microglia-dependent synaptic alterations in specific AD-vulnerable projection pathways are differentially controlled by genetic context.


Alzheimer Disease , Humans , Mice , Animals , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Microglia/metabolism , Amyloid beta-Protein Precursor/metabolism , Mice, Transgenic , Mice, Inbred C57BL , Hippocampus/metabolism , Disease Models, Animal , Neuronal Plasticity/genetics , Synapses/metabolism , Amyloid/metabolism , Dendrites/metabolism
15.
Neuroscience ; 537: 189-204, 2024 Jan 26.
Article En | MEDLINE | ID: mdl-38036056

Rett syndrome (RTT) is a debilitating neurodevelopmental disorder caused by mutations in the X-linked methyl-CpG-binding protein 2 (MeCP2) gene, resulting in severe deficits in learning and memory. Alterations in synaptic plasticity have been reported in RTT, however most electrophysiological studies have been performed in male mice only, despite the fact that RTT is primarily found in females. In addition, most studies have focused on excitation, despite the emerging evidence for the important role of inhibition in learning and memory. Here, we performed an electrophysiological characterization in the CA1 region of the hippocampus in both males and females of RTT mouse models with a focus on neurogliaform (NGF) interneurons, given that they are the most abundant dendrite-targeting interneuron subtype in the hippocampus. We found that theta-burst stimulation (TBS) failed to induce long-term potentiation (LTP) in either pyramidal neurons or NGF interneurons in male or female RTT mice, with no apparent changes in short-term plasticity (STP). This failure to induce LTP was accompanied by excitation/inhibition (E/I) imbalances and altered excitability, in a sex- and cell-type specific manner. Specifically, NGF interneurons of male RTT mice displayed increased intrinsic excitability, a depolarized resting membrane potential, and decreased E/I balance, while in female RTT mice, the resting membrane potential was depolarized. Understanding the role of NGF interneurons in RTT animal models is crucial for developing targeted treatments to improve cognition in individuals with this disorder.


Rett Syndrome , Male , Female , Mice , Animals , Rett Syndrome/genetics , Long-Term Potentiation , Methyl-CpG-Binding Protein 2/metabolism , Hippocampus/metabolism , Neuronal Plasticity/genetics , Disease Models, Animal
16.
J Neurosci ; 44(7)2024 Feb 14.
Article En | MEDLINE | ID: mdl-38154956

The Kv4.2 potassium channel plays established roles in neuronal excitability, while also being implicated in plasticity. Current means to study the roles of Kv4.2 are limited, motivating us to design a genetically encoded membrane tethered Heteropodatoxin-2 (MetaPoda). We find that MetaPoda is an ultrapotent and selective gating-modifier of Kv4.2. We narrow its site of contact with the channel to two adjacent residues within the voltage sensitive domain (VSD) and, with docking simulations, suggest that the toxin binds the VSD from within the membrane. We also show that MetaPoda does not require an external linker of the channel for its activity. In neurons (obtained from female and male rat neonates), MetaPoda specifically, and potently, inhibits all Kv4 currents, leaving all other A-type currents unaffected. Inhibition of Kv4 in hippocampal neurons does not promote excessive excitability, as is expected from a simple potassium channel blocker. We do find that MetaPoda's prolonged expression (1 week) increases expression levels of the immediate early gene cFos and prevents potentiation. These findings argue for a major role of Kv4.2 in facilitating plasticity of hippocampal neurons. Lastly, we show that our engineering strategy is suitable for the swift engineering of another potent Kv4.2-selective membrane-tethered toxin, Phrixotoxin-1, denoted MetaPhix. Together, we provide two uniquely potent genetic tools to study Kv4.2 in neuronal excitability and plasticity.


Neurons , Shal Potassium Channels , Rats , Male , Female , Animals , Neurons/physiology , Shal Potassium Channels/genetics , Shal Potassium Channels/metabolism , Hippocampus/metabolism , Neuronal Plasticity/genetics
17.
Aging Cell ; 23(2): e14033, 2024 Feb.
Article En | MEDLINE | ID: mdl-38130024

The disconnection of neuronal circuitry through synaptic loss is presumed to be a major driver of age-related cognitive decline. Age-related cognitive decline is heterogeneous, yet whether genetic mechanisms differentiate successful from unsuccessful cognitive decline through maintenance or vulnerability of synaptic connections remains unknown. Previous work using rodent and primate models leveraged various techniques to imply that age-related synaptic loss is widespread on pyramidal cells in prefrontal cortex (PFC) circuits but absent on those in area CA1 of the hippocampus. Here, we examined the effect of aging on synapses on projection neurons forming a hippocampal-cortico-thalamic circuit important for spatial working memory tasks from two genetically distinct mouse strains that exhibit susceptibility (C57BL/6J) or resistance (PWK/PhJ) to cognitive decline during aging. Across both strains, synapse density on CA1-to-PFC projection neurons appeared completely intact with age. In contrast, we found synapse loss on PFC-to-nucleus reuniens (RE) projection neurons from aged C57BL/6J but not PWK/PhJ mice. Moreover, synapses from aged PWK/PhJ mice but not from C57BL/6J exhibited altered morphologies that suggest increased efficiency to drive depolarization in the parent dendrite. Our findings suggest resistance to age-related cognitive decline results in part by age-related synaptic adaptations, and identification of these mechanisms in PWK/PhJ mice could uncover new therapeutic targets for promoting successful cognitive aging and extending human health span.


Hippocampus , Neurons , Humans , Mice , Animals , Aged , Mice, Inbred C57BL , Hippocampus/physiology , Pyramidal Cells , Synapses/physiology , Neuronal Plasticity/genetics
18.
Sci Rep ; 13(1): 21919, 2023 12 08.
Article En | MEDLINE | ID: mdl-38082035

MicroRNAs are an emerging class of synaptic regulators. These small noncoding RNAs post-transcriptionally regulate gene expression, thereby altering neuronal pathways and shaping cell-to-cell communication. Their ability to rapidly alter gene expression and target multiple pathways makes them interesting candidates in the study of synaptic plasticity. Here, we demonstrate that the proconvulsive microRNA miR-324-5p regulates excitatory synapse structure and function in the hippocampus of mice. Both Mir324 knockout (KO) and miR-324-5p antagomir treatment significantly reduce dendritic spine density in the hippocampal CA1 subregion, and Mir324 KO, but not miR-324-5p antagomir treatment, shift dendritic spine morphology, reducing the proportion of thin, "unstable" spines. Western blot and quantitative Real-Time PCR revealed changes in protein and mRNA levels for potassium channels, cytoskeletal components, and synaptic markers, including MAP2 and Kv4.2, which are important for long-term potentiation (LTP). In line with these findings, slice electrophysiology revealed that LTP is severely impaired in Mir324 KO mice, while neurotransmitter release probability remains unchanged. Overall, this study demonstrates that miR-324-5p regulates dendritic spine density, morphology, and plasticity in the hippocampus, potentially via multiple cytoskeletal and synaptic modulators.


Long-Term Potentiation , MicroRNAs , Mice , Animals , Long-Term Potentiation/physiology , Dendritic Spines/metabolism , Antagomirs/metabolism , Hippocampus/metabolism , Neuronal Plasticity/genetics , Synapses/metabolism , Mice, Knockout , MicroRNAs/genetics , MicroRNAs/metabolism
19.
Int J Mol Sci ; 24(21)2023 Oct 30.
Article En | MEDLINE | ID: mdl-37958729

Schizophrenia (SZ) is a common psychiatric neurodevelopmental disorder with a complex genetic architecture. Genome-wide association studies indicate the involvement of several transcription factors, including ASCL1, in the pathogenesis of SZ. We aimed to identify ASCL1-dependent cellular and molecular mechanisms associated with SZ. We used Capture-C, CRISPR/Cas9 systems and RNA-seq analysis to confirm the involvement of ASCL1 in SZ-associated pathogenesis, establish a mutant SH-SY5Y line with a functional ASCL1 knockout (ASCL1-del) and elucidate differentially expressed genes that may underlie ASCL1-dependent pathogenic mechanisms. Capture-C confirmed the spatial interaction of the ASCL1 promoter with SZ-associated loci. Transcriptome analysis showed that ASCL1 regulation may be through a negative feedback mechanism. ASCL1 dysfunction affects the expression of genes associated with the pathogenesis of SZ, as well as bipolar and depressive disorders. Genes differentially expressed in ASCL1-del are involved in cell mitosis, neuronal projection, neuropeptide signaling, and the formation of intercellular contacts, including the synapse. After retinoic acid (RA)-induced differentiation, ASCL1 activity is restricted to a small subset of genes involved in neuroplasticity. These data suggest that ASCL1 dysfunction promotes SZ development predominantly before the onset of neuronal differentiation by slowing cell proliferation and impeding the formation of neuronal signatures.


Neuroblastoma , Schizophrenia , Humans , Schizophrenia/genetics , Schizophrenia/pathology , Genome-Wide Association Study , Cell Proliferation/genetics , Neuronal Plasticity/genetics , Basic Helix-Loop-Helix Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism
20.
Proc Natl Acad Sci U S A ; 120(49): e2308671120, 2023 Dec 05.
Article En | MEDLINE | ID: mdl-38015848

Activation of neuronal protein synthesis upon learning is critical for the formation of long-term memory. Here, we report that learning in the contextual fear conditioning paradigm engenders a decrease in eIF2α (eukaryotic translation initiation factor 2) phosphorylation in astrocytes in the hippocampal CA1 region, which promotes protein synthesis. Genetic reduction of eIF2α phosphorylation in hippocampal astrocytes enhanced contextual and spatial memory and lowered the threshold for the induction of long-lasting plasticity by modulating synaptic transmission. Thus, learning-induced dephosphorylation of eIF2α in astrocytes bolsters hippocampal synaptic plasticity and consolidation of long-term memories.


Astrocytes , Long-Term Potentiation , Long-Term Potentiation/physiology , Neuronal Plasticity/genetics , Hippocampus/physiology , Protein Biosynthesis , CA1 Region, Hippocampal , Memory, Long-Term/physiology
...